Biosynthetic phage display: a novel protein engineering tool combining chemical and genetic diversity

Dwyer MA, Lu W, Dwyer JJ, Kossiakoff AA

Chem. Biol. 2000 Apr;7(4):263-74

PMID: 10780926

Abstract

BACKGROUND: Molecular diversity in nature is developed through a combination of genetic and chemical elements. We have developed a method that permits selective manipulation of both these elements in one protein engineering tool. It combines the ability to introduce non-natural amino acids into a protein using native chemical ligation with exhaustive targeted mutagenesis of the protein via phage-display mutagenesis.

RESULTS: A fully functional biosynthetic version of the protease inhibitor eglin c was constructed. The amino-terminal fragment (residues 8-40) was chemically synthesized with a non-natural amino acid at position 25. The remaining carboxy-terminal fragment was expressed as a 30-residue peptide extension of gIIIp or gVIIIp on filamentous phage in a phage-display mutagenesis format. Native chemical ligation was used to couple the two fragments and produced a protein that refolded to its active form. To facilitate the packing of the introduced non-natural amino acid, residues 52 and 54 in the carboxy-terminal fragment were fully randomized by phage-display mutagenesis. Although the majority of the observed solutions for residues 52 and 54 were hydrophobic – complementing the stereochemistry of the introduced non-natural amino acid – a significant number of residues (unexpected because of stereochemical and charge criteria) were observed in these positions.

CONCLUSIONS: Peptide synthesis and phage-display mutagenesis can be combined to produce a very powerful protein engineering tool. The physical properties of the environment surrounding the introduced non-natural residue can be selected for by evaluating all possible combinations of amino acid types at a targeted set of sites using phage-display mutagenesis.